
Direct Proofs



Outline for Today

Mathematical Proof

• What is a mathematical proof? What does 
a proof look like?

Direct Proofs

• A versatile, powerful proof technique.

Universal and Existential Statements

• What exactly are we trying to prove?

Proofs on Set Theory

• Formalizing our reasoning.



What is a Proof?



A proof is an argument that
demonstrates why a conclusion is true, 
subject to certain standards of truth.



A mathematical proof is an argument 
that demonstrates why a mathematical 
statement is true, following the rules of 

mathematics.





Modern Proofs



Two Quick Definitions

An integer n is even if there is an integer k
such that n = 2k.

• This means that 0 is even.

An integer n is odd if there is an integer
k such that n = 2k + 1.

• This means that 0 is not odd.

We'll assume the following for now:

• Every integer is either even or odd.

• No integer is both even and odd.



Our First Direct Proof

Theorem: If n is an even integer, then n2 is even.

Proof: Let n be an even integer.

Since n is even, there is some integer k

such that n = 2k.

This means that n2 = (2k)2 = 4k2 = 2(2k2).

From this, we see that there is an integer

m (namely, 2k2) where n2 = 2m.
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To prove a statement of the form

“If P, then Q”

Assume that P is true, then show that Q must 
be true as well.
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definitions.
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Notice how we use the value of k that we obtained above. 
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That wasn't so bad! Let's do another one.



Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. Since m is odd, we know that there is an integer k where

m = 2k + 1.
(1)

Similarly, because n is odd there must be some integer r such that

n = 2r + 1.      
(2)

By adding equations (1) and (2) we learn that

m + n = 2k + 1 + 2r + 1

= 2k + 2r + 2

= 2(k + r + 
1). (3)

Equation (3) tells us that there is an integer s (namely, k + r + 1) such that 
m + n = 2s. Therefore, we see that m + n is even, as required. ■
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How do we prove that this is 
true for any integers?



Proving Something Always Holds

Many statements have the form

For any x, [some-property] holds of x.

Examples:

For all integers n, if n is even, n2 is even.

For any sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C.

For all sets S: |S| < |℘(S)|.

Everything that drowns me makes me wanna fly.

How do we prove these statements when there 
are (potentially) infinitely many cases to check?



Arbitrary Choices

To prove that some property holds true for all 
possible x, show that no matter what choice of 
x you make, that property must be true.

• Start the proof by choosing x arbitrarily:

• “Let x be an arbitrary even integer.”

• “Let x be any set containing 137.”

• “Consider any x.”

• “Pick an odd integer x.”

• Demonstrate that the property holds true 
for this choice of x.
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Numbering these equalities lets us refer back to 
them later on, making the flow of the proof a bit 

easier to understand.
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Notice that we use k in the first equality and r in 
the second equality. That’s because we know that 
n is twice something plus one, but we can’t say 

for sure that it’s k specifically.
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This is a grammatically correct and complete sentence! Proofs 
are expected to be written in complete sentences, so you’ll often 

use punctuation at the end of formulas.

We recommend using the “mugga mugga” test – if you read a 
proof and replace all the mathematical notation with “mugga 

mugga,” what comes back should be a valid sentence.
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This is called a proof by cases (alternatively, a proof by 
exhaustion) and works by showing that the theorem is 

true regardless of what specific outcome arises.
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After splitting into cases, it's a good idea to 
summarize what you just did so that the reader 

knows what to take away from it.
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2(n(k+1)). This means there is an integer m (namely, n(k+1)) such that 

n(n+1) = 2m, so n(n+1) is even. In either case, we find that n(n+1) is 
even, which is what we needed to show. ■



Some Little Exercises

Here’s a list of other theorems that are true about odd and 
even numbers:

• Theorem: The sum and difference of any two even numbers 
is even.

• Theorem: The sum and difference of an odd number and an 
even number is odd.

• Theorem: The product of any integer and an even number 
is even.

• Theorem: The product of any two odd numbers is odd.

Going forward, we’ll just take these results for granted. Feel 
free to use them in the problem sets.

If you’d like to practice the techniques from today, try your 
hand at proving these results!



Universal and Existential Statements
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This means that r2 – s2 = n, which is what we needed to 
show. ■
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This is a very different sort of request than what 
we’ve seen in the past. How on earth do we go 

about proving something like this?



Universal vs. Existential Statements

A universal statement is a statement of 
the form

For all x, [some-property] holds for x.

We've seen how to prove these statements.

An existential statement is a statement of 
the form

There is some x where [some-property] holds for x.

How do you prove an existential statement?



Proving an Existential Statement

Over the course of the quarter, we will see 
several different ways to prove an 
existential statement of the form

There is an x where [some-property] holds for x.

Simplest approach: Search far and wide, 
find an x that has the right property, then 
show why your choice is correct.
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Goal: Discover some choice 
of r and s that makes this 

claim hold true.
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Our guess:

(k+1)2 – k2 = n
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Follow-Up Question: There are some 
integers that can’t be written as r2 – s2 for 

any integers r and s.

Can you prove that every integer can be 
formed by adding and subtracting some 

combination of at most three perfect 
squares?



Reasoning about subsets



Set Theory Review

Recall from last time that we write x ∈ S if x is 
an element of set S and x ∉ S if x is not an 
element of set S.

If S and T are sets, we say that S is a subset of 
T (denoted S ⊆ T) if the following statement is 
true:

For every object x, if x ∈ S, then x ∈ T.

Let's explore some properties of the subset 
relation.



Theorem: For any sets A, B, and C, if A ⊆ B and
B ⊆ C, then A ⊆ C.

Proof: Let A, B, and C be arbitrary sets where A ⊆ B
and B ⊆ C. We need to prove that A ⊆ C. To do so,
consider any x ∈ A. We will prove that x ∈ C.

Since A ⊆ B and x ∈ A, we see that x ∈ B. Also, because 
B ⊆ C and x ∈ B, we see that x ∈ C, which is what we 
needed to show. ■
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Is this a universal or existential statement?
How do you prove a universal statement?
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To prove a statement of the form

“If P, then Q”

Assume that P is true, then show that Q must be 
true as well.
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Notice that the original theorem says nothing about a variable x, 
but our proof needs one anyway. If you proceed slowly and 

“unpack” definitions like we’re doing here, you’ll often find yourself 
introducing extra variables.
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This property of the subset relation is called 
transitivity. We’ll revisit transitivity in a couple of 

weeks.
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In this first case, we are proving that A ⊆
C. That means we pick a new variable x ∈

A and prove x ∈ C.

In this second case, we are harnessing the fact that A
⊆ B. That means we take an existing variable and learn 

something new about it.
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Question to ponder: is this theorem still true if we 
replace ⊆ with ∈?



Key Takeaways

To prove that S ⊆ T, pick an arbitrary x 
∈ S and then show that x ∈ T    

Use this as a template when you are 
proving that one set is a subset of another.

If you know that x ∈ S and S ⊆ T, you 
can conclude that x ∈ T

You can apply the definition of a subset 
like this when you already know that one 
set is a subset of another.



Reasoning about Set Equality



Set Equality

As we mentioned on Monday, two sets A and B
are equal when they have exactly the same 
elements.

Here’s a little theorem that’s very useful for 
showing that two sets are equal:

Theorem: If A and B are sets where A ⊆ B
and B ⊆ A, then A = B.

We’ve included a proof of this result as an 
appendix to this slide deck. You should read 
over it on your own time.



A Trickier Theorem

The next theorem for today is this one, which 
comes to us from the annals of set theory:

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B.

Unlike our previous theorem, this one is a lot 
harder to see using Venn diagrams alone.

A B



Tackling our Theorem

Theorem: If A and B are sets and
A ∪ B ⊆ A ∩ B, then A = B.

Before we Flail and Panic, let’s see if we 
can tease out some info about what this 
proof might look like.

We’re going to pick arbitrary sets A and B.

We’re going to assume A ∪ B ⊆ A ∩ B.

We’re going to prove that A = B.
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A lemma is a smaller proof that’s 
designed to build into a larger one. 

Think of it like program decomposition, 
except for proofs!
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Key Takeaways

To prove that S = T, show that S ⊆ T and 
T ⊆ S    

Use this as a template when you are 
proving that one set is equal to another.

If you know that S = T, you can 
conclude that S ⊆ T and T ⊆ S

You can apply the definition of a subset 
like this when you already know that one 
set is equal to another.



Reasoning about Power Sets



Power Sets

First, let’s recap the formal definition of 
the power set. The power set of a set S is 
the set of all subsets of S:

℘(S) = { T | T ⊆ S }

Here’s a theorem that touches on both 
power sets and set equality:

Theorem: For any sets A and B,                
if A ∩ B = A, then A ∈ ℘(B).



Theorem: For any sets A and B, if A ∩ B = A, then A ∈ ℘(B).

Proof: Let A and B be arbitrary sets. We will prove both 
directions of the implication.

(⇒) First, assume that A ∩ B = A. We will show that A ∈ ℘(B). 
To do so, we’ll prove that A ⊆ B by picking an arbitrary x ∈ A
and showing that x ∈ B.

Starting with x ∈ A, we’ll use the fact that A = A ∩ B to 
conclude that x ∈ A ∩ B. Then, since x ∈ A ∩ B, we learn that 
x ∈ A and x ∈ B. In particular, that means that x ∈ B, which is 
what we needed to show.

(⇐) Next, assume that A ∈ ℘(B). We will prove that A ∩ B = A.

Talk with your neighbors and set up this proof. What are you 
assuming? What do you need to show?

Based on the definition of a power set, how do you prove that a 
set is an element of a particular power set?
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Based on the definition of power set, 
this is what we need to prove.



Theorem: For any sets A and B, if A ∩ B = A, then A ∈ ℘(B).

Proof: Let A and B be arbitrary sets and assume that               
A ∩ B = A. We will show that A ∈ ℘(B). To do so, we’ll          
prove that A ⊆ B by picking an arbitrary x ∈ A and              
showing that x ∈ B.

Starting with x ∈ A, we’ll use the fact that A = A ∩ B to 
conclude that x ∈ A ∩ B. Then, since x ∈ A ∩ B, we learn that 
x ∈ A and x ∈ B. In particular, that means that x ∈ B, which is 
what we needed to show.

Hey, we know how to do that! :)
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Key Takeaways

To prove that T ∈ ℘(S), show that       

T ⊆ S    

Use this as a template when you are 
proving that one set is in the power set of 
another.

If you know that T ∈ ℘(S), you can 
conclude that T ⊆ S

You can apply the definition of a subset 
like this when you already know that one 
set is in the power set of another.



Reasoning about Set Combinations



Operation Proof Template Applying the Definition

S ∪ T = { x | x ∈ S
or x ∈ T (or both) }

To prove x ∈ S ∪ T, prove 
that x ∈ S or that x ∈ T

If you know x ∈ S ∪ T, you 
can conclude x ∈ S or x ∈ T.

S ∩ T = { x | x ∈ S
and x ∈ T }

To prove x ∈ S ∩ T, prove 
that x ∈ S and x ∈ T.

If you know x ∈ S ∩ T, you 
can conclude x ∈ S and x ∈ T.

S – T = { x | x ∈ S
and x ∉ T }

To prove x ∈ S – T, prove 
that x ∈ S and x ∉ T.

If you know x ∈ S – T, you can 
conclude x ∈ S and x ∉ T.

S Δ T = { x | 
either x ∈ S and

x ∉ T, or x ∉ S and 
x ∈ T }

To prove that x ∈ S Δ T,
prove that x ∈ S and x ∉ 

T, or that x ∉ S and x ∈ T.

If you know x ∈ S Δ T, you 
can conclude either x ∈ S and 

x ∉ T, or x ∉ S and x ∈ T.



Time-Out for Announcements!



Campuswire

We have a Campuswire site for CS103.

Sign in to Campuswire and use code 4452 
to sign in.

Feel free to ask us questions!

Use the site to find a partner for the 
problem sets!



Problem Set 0

Problem Set 0 went out on Monday. It’s due 
this Thursday at 11:59PM.

Even though this just involves setting up your 
compiler and submitting things, please start 
this one early. If you start things on Thursday 
evening, we can’t help you troubleshoot Qt 
Creator issues!

There’s a very detailed troubleshooting guide 
up on the CS103 website. If you’re still having 
trouble, please feel free to ask on 
Campuswire!



Practice



What We've Covered

What is a mathematical proof?

An argument – mostly written in English – outlining 
a mathematical argument.

What is a direct proof?

It's a proof where you begin from some initial 
assumptions and reason your way to the 
conclusion.

What are universal and existential statements?

Universal statements make a claim about all 
objects of one type. Existential statements make 
claims about at least one object of some type.

How do we write proofs about set theory?

By calling back to definitions! Definitions are key.



Your Action Items

Read “Guide to ∈ and ⊆.”

You’ll want to have a handle on how these 
concepts are related, and on how they 
differ.

Finish and submit Problem Set 0.

Don’t put this off until the last minute!



Next Time

Indirect Proofs

How do you prove something without actually 
proving it?

Mathematical Implications

What exactly does “if P, then Q” mean?

Proof by Contrapositive

A helpful technique for proving implications.

Proof by Contradiction

Proving something is true by showing it can't be 
false.



Appendix: Set Equality



Set Equality

If A and B are sets, we say that A = B
precisely when the following statement is 
true:

For any object x, x ∈ A if and only if x ∈ B.

(This is called the axiom of extensionality.)

In practice, this definition is tricky to work 
with.

It's often easier to use the following result to 
show that two sets are equal:

For any sets A and B,
if A ⊆ B and B ⊆ A, then A = B.



Theorem: For any sets A and B, if A ⊆ B and B ⊆ A,
then A = B.

Proof: Let A and B be arbitrary sets where A ⊆ B
and B ⊆ A. We need to prove A = B. To do so, we
will prove for all x that x ∈ A if and only if x ∈ B.

First, we'll prove that if x ∈ A, then x ∈ B. To do so, 
take any x ∈ A. Since A ⊆ B and x ∈ A, we see that 
x ∈ B, as required.

Next, we'll prove that if x ∈ B, then x ∈ A. Consider an 
arbitrary x ∈ B. Since B ⊆ A and
x ∈ B, we see that x ∈ A, which is what we needed to 
show.

Since we've proven both directions of implication, we 
see that A = B. ■
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